As I learned from my work in flight dynamics, to keep an airplane flying safely, you have to predict the likelihood of equipment failure. And today we do that by combining various data sets with real-world knowledge, such as the laws of physics.
Integrating these two sets of information — data and human knowledge — automatically is a relatively new idea and practice. It involves combining human knowledge with a multitude of data sets via data analytics and artificial intelligence to potentially answer critical questions (such as how to cure a specific type of cancer). As a systems scientist who has worked in areas such as robotics and distributed autonomous systems, I see how this integration has changed many industries. And I believe there is a lot more we can do.
Take medicine, for example. The immense amount of patient data, trial data, medical literature, and knowledge of key functions like metabolic and genetic pathways could give us tremendous insight if it was available for mining and analysis. If we could overlay all of this data and knowledge with analytics and artificial intelligence (AI) technology, we could solve challenges that today seem out of our reach.
I’ve been exploring this frontier for quite a few years now – both personally and professionally. During my years of training and continuing into my early career, my father was diagnosed with a sequence of chronic conditions, starting with a brain tumor when he was only 40 years old. Later, a small but unfortunate car accident injured the same area of scalp that had been weakened by radio- and chemotherapy. Then he developed cardiovascular issues resulting from repeated use of anesthesia, and lastly he was diagnosed with chronic lymphocytic leukemia. This unique combination of conditions (comorbidities) meant it was extremely difficult to get insight into his situation. My family and I desperately wanted to learn more about his medical issues and to understand how others have dealt with similar diagnoses; we wanted to completely immerse ourselves in the latest medications and treatment options, learn the potential adverse and side effects of the medications, understand the interactions among the comorbidities and medications, and understand how new medical discoveries could be relevant to his conditions.
Read More: http://venturebeat.com/2016/04/09/why-big-data-needs-a-unified-theory-of-everything/
Integrating these two sets of information — data and human knowledge — automatically is a relatively new idea and practice. It involves combining human knowledge with a multitude of data sets via data analytics and artificial intelligence to potentially answer critical questions (such as how to cure a specific type of cancer). As a systems scientist who has worked in areas such as robotics and distributed autonomous systems, I see how this integration has changed many industries. And I believe there is a lot more we can do.
Take medicine, for example. The immense amount of patient data, trial data, medical literature, and knowledge of key functions like metabolic and genetic pathways could give us tremendous insight if it was available for mining and analysis. If we could overlay all of this data and knowledge with analytics and artificial intelligence (AI) technology, we could solve challenges that today seem out of our reach.
I’ve been exploring this frontier for quite a few years now – both personally and professionally. During my years of training and continuing into my early career, my father was diagnosed with a sequence of chronic conditions, starting with a brain tumor when he was only 40 years old. Later, a small but unfortunate car accident injured the same area of scalp that had been weakened by radio- and chemotherapy. Then he developed cardiovascular issues resulting from repeated use of anesthesia, and lastly he was diagnosed with chronic lymphocytic leukemia. This unique combination of conditions (comorbidities) meant it was extremely difficult to get insight into his situation. My family and I desperately wanted to learn more about his medical issues and to understand how others have dealt with similar diagnoses; we wanted to completely immerse ourselves in the latest medications and treatment options, learn the potential adverse and side effects of the medications, understand the interactions among the comorbidities and medications, and understand how new medical discoveries could be relevant to his conditions.
Read More: http://venturebeat.com/2016/04/09/why-big-data-needs-a-unified-theory-of-everything/
No comments:
Post a Comment